
Shallow Red: A Chess AI
Sean Carter, Rocco DiVerdi, Manik Sethi, Jack Long

What was our project?
Our project is a chess AI that uses a “Min-
Max” search algorithm to find the opti-
mal move to make. It also uses “alpha-beta”
pruning to reduce the number of calcula-
tions that it has to do, and utilizes a dictio-
nary as an “opening book.”

An screenshot of the program that works
with the server

Min-Max and Alpha-Beta Pruning:

	 The min-max algorithm works by examining all of the
possible moves that it could make. Then, it looks at all
of the possible responses to each move. Then, it looks
at all the things that it could do in response to THAT ...
and this keeps going until it runs out of time, figuring
out every possible move and counter-move.
	 Each time it looks at another layer of moves, it makes
the moves on a board. Then, it uses an “evaluation
function” to determine which resultant board is best.
The AI is the “maximizing” player, which wants the best
board, while its opponent is the “minimizing” player,
which wants the worst board. The AI assumes that if
its opponent can mess up the board, it will - so it won’t
make any moves that allow it to be put in checkmate.
	 An AI will always be a conservative player, making the
most benificial move it can, while keeping the more risk
free.

How does our code work?
	

	 Want More Info?
- Go to our website:
 http://rdiverdi.github.io/shallowRed/
- Ask us! We know things!
- Become one with Wikipedia

- The AI and the board are separate - despite drastic
changes in the AI, we haven’t had to wory about how to
interact with our chessboard
- Our AI starts with a board, and creates branches (which
create their own branches) based on all possible moves,
and then they evaluate themselves recursively.
- The AI can also look up boards in a dictionary, to allow it
to pick early moves more easily
- Finally, you interact with it through a command line inter-
face that we created for it, or play against it on a server.

